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Abstract

Every 11 years, the Sun goes through periods of activity, with the occur-
rence of many solar flares and mass ejections, both energetic phenomena of
magnetic origin. Due to its effects on Earth, the study of solar activity is
of paramount importance. POEMAS (Polarization of Millimeter Emission
of Solar Activity) is a system of two telescopes, installed at CASLEO (El
Leoncito Astronomical Complex) in Argentina, which monitors the Sun at
two millimeter wavelengths (corresponding frequencies of 45 and 90 GHz).
The objective of this work is to automatically detect solar flares observed
by the polarimeter. First it is necessary to eliminate the background noise,
caused mainly by instrumental problems, from the light curves of millimeter
solar emission. The methodology used to exclude the noise proposed in this
work is to use the tendency of time series. The subtraction of this model
from the light curves provides the input to automate the detection of solar
flares using artificial intelligence techniques. A Neural Network was trained
to recognize patterns and analyze a dataset in order to identify solar flares.
Previously, a total of 30 flares had been visually identified and analyzed in the
POEMAS database between 2011/11/22 and 2013/12/10. The methodology
presented here confirmed 87% of these events, moreover the neural network
was able to identify at least 9 new events. As the neural network was trained
to detect impulsive events (lasting less than 5 min), long duration bursts
were not automatically detected, nor were they detected visually due to the
background noise of the telescope. Visual inspection of the POEMAS data,
when comparing with microwave data from the RSTN, allowed the identifi-
cation of an additional 10 long-duration solar flares at 45 GHz. We discuss
some problems encountered and possible solutions for future work.
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1. Introduction

The Sun is an active star with a magnetic cycle of about 11 years (Hath-
away, 2015). In periods of maximum activity, an increase in the frequency of
solar flares and coronal mass ejections can be observed. Both particles and
magnetic fields thrown into interplanetary space by coronal mass from the
Sun may impact the Earth. Geomagnetic storms, disruption of telecommuni-
cations signals, GPS malfunctions, and blackouts are some of the disruptions
affecting Earth.

Over the years, studies on solar activity and the Sun’s behavior have
been carried out trying to mitigate these effects on Earth (Pulkkinen, 2007).
For example, studies involving active regions, magnetic fields, solar flares,
coronal mass ejections, and others are all relevant. Since the emission from
solar activity is produced at all wavelengths of the eletromagnetic spectrum,
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observations at different frequencies is crucial to understand solar phenomena
and the mechanisms involved (Dulk, 1985).

In 1859, English astronomers Richard C. Carrington and Richard Hodg-
son identified the first solar flare (Tsurutani et al., 2003). The explosion was
quite intense, and a flash located in a small region was detected in images of
the Sun’s visible light. Just 17 hours later, a coronal mass ejection hit the
Earth, causing one of the largest magnetic storms ever recorded. If a similar
storm reaches our planet today, it would cause severe communication and
electrical energy problems, among others (Phillips, 2014).

Solar phenomena are usually associated with active regions of the solar
atmosphere. When a solar flare occurs, a large amount of energy is released
(1028−1032 erg), this energy is used in accelerating particles and heating the
plasma, which generate radiation across the entire electromagnetic spectrum
(from X rays to radio waves) (Mann et al., 2009).

Observations of solar activity, both from ground and space observatories,
have generated a large amount of data. Thus it is necessary to apply artificial
intelligence techniques to analyze the data in search of the sudden increases
in the emission caused by solar flares. Here we have used a neural network
to find patterns and identify solar flares automatically.

This work involves the automatic detection of solar flares in the data
of the Polarization Emission of Millimeter Activity at the Sun (POEMAS)
telescope (Valio et al., 2013). POEMAS is a polarimeter that observed the
Sun daily from December 2011 to December 2013 at the rarely explored
frequencies of 45 and 90 GHz.

The paper is organized as follows. In Section 2, we describe the data,
and in Section 3, the Neural Network methodology. In Section 4, the results
of the Neural Network experiments are detailed. Finally, we conclude, in
Section 5, and anticipate future research.

2. POEMAS Telescope

POEMAS is a system of two telescopes, installed at the CASLEO Obser-
vatory (El Leoncito Astronomical Complex), in Argentina. The POEMAS
telescope provides solar left and right circular polarization measurements at
two-millimeter wavelengths (45 and 90 GHz) with a temporal resolution of
10ms. It operated continually for two years (Dec 2011 - Dec 2013) observing
the full disk of the Sun, and detected several flares. The data collected from
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the Sun every day were written to binary files, converted using the Python
programming language, and finally written to FITS files.

2.1. Data Acquisition

The antenna temperature data at both left and right circular polarized
emission at 45 and 90 GHz are recorded in the daily binary files (TRK exten-
sion). Also the azimuth and elevation angles of the Sun are recorded in the
file. For the analyzes, we used the light curve resulting from the sum of the
two, right (RCP) and left (LCP), circular polarizations of the antenna tem-
perature at 45 GHz. Using the Python programming language version 3.6,
the TRK files were converted to FITS files using the following procedures:

• FITS level 0 - conversion of data from the TRK to FITS file, using the
10ms configuration of the original file.

• FITS level 1 - integration of the temporal resolution of the FITS file
level 0 from 1 ms to 1s using the median of the data within the 1s
interval.

• FITS level 2 - the merger of all FITS files level 1 of the same day into
a single new file

• FITS level 3 - application of the time series (Trend) for all FITS file
level 2

The first day of POEMAS observation used in this work was 12/01/2011,
while the last day used was 12/10/2013. In this period, we did not have data
for 51 days, which resulted in a total of 690 days for analysis.

After converting the POEMAS binary files to Flexible Image Transport
System (FITS) files, the data is integrated into the database. Finally, the
automatic detection of solar flares is applied using Artificial Intelligence tech-
niques, especially pattern recognition and machine learning (Deep Learning).

2.2. Data calibration

Unfortunately, there is a misalignment of the telescope support structure
due to mechanical problems, causing the signal to abruptly decrease during
local noon. This decrease of the antenna temperature is clearly seen in
Figure 1, especially between 16 and 17 UT. The red curve on the same plot
depicts the expected light curve profile of the observations. Due to variations
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Figure 1: Full-day observation of solar energy flux at 45 GHz, left circular polarization
(black curve) and attenuated flux (red curve).

in the solar emission caused by this telescope misalignment, it is difficult to
identify any increase caused by a solar event, except for the most intense
ones, which are usually rare.

Therefore, to minimize the daily variation of the telescope measurements
at 45 GHz, a time series subtraction of the signal was performed. This
time series is the component trend of the antenna temperature of the same
polarization on the day under consideration. In Figure 2, we can see the 3
components of the time series for the observations on 01/27/2012. In the top
panel of Figure 2, the light curve observed by POEMAS, that is the result of
the sum of the RCP and LCP polarizations, is shown. The second plot from
the top is the signal trend for different growth and decrease patterns. In the
third plot, the seasonality is presented; in this case, we consider an interval
of 50 points to analyze the behavior for every period of 1s. In the last panel,
the residuals after subtraction of the effects of seasonality and trend from
the data are presented. The residual fluctuations are attributed to random
components.

In Figure 3, the original observed data (blue curve), the trend of the
time series (red curve), and the result after subtracting the trend from the
observed signal (black curve) are shown. A value of 1000 was added to this
subtraction residual to place it on the same scale as the original signal. On
this day, a solar flare occurred at 18:15 UT, and the impulsive peak can be
observed in the original curve (blue). On the same day, between 21:00 UT
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Figure 2: Decomposition of the time series of 2012/01/27
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and 22:00 UT, there was a drop in signal due to interference in the Earth’s
atmosphere, probably due to clouds in front of the Sun. These drops in signal
due to clouds are significant noise in the signal, and we have disregarded them
from the data analysis.

Figure 3: Analysis of the emission observed by POEMAS at 45 GHz all day 2012/01/27

To verify the existence of a solar event, we used data from the Radio
Solar Telescope Network (RSTN) operated by the Meteorological Agency of
the United States Air Force (Guidice, 1979). This network is composed of 4
radio stations located around the globe. Considering the location of POE-
MAS in Argentina, we will use data from observatories in Palehua, Hawaii
(USA), Sagamore Hill in Massachusetts (USA), and San Vito (Italy). The
3 observatories cover the POEMAS observation window depending on the
time of year. However, the antenna with the highest time intersection is in
Sagamore Hill, Massachusetts (USA). Data from Sagamore Hill and Palehua
stations for 01/27/2012 are shown in Figure 4, in the bottom and top panels,
respectively.

The solar flare that happened on this day at 18:15 UT is clearly seen in
the RSTN data shown in the two panels of Figure 4. The impulsive phase of
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Figure 4: RSTN data for 2012/01/27 - Palehua (upper) and Sagamore Hill (bottom)
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this event was also detected in the POEMAS signal at 45 GHz (Figure 3).
However, to see the gradual phase of the flare, it is necessary to subtract
the daily instrumental variation from the signal due to the telescope’s mis-
alignment. This can be done by subtracting the signal observed on the day
before (or after) the event, since the variation in the signal does not vary
significantly in the period of a day or so. However, this is not the procedure
performed in this work due to its requirement of human supervision.

3. Neural Network

Based on biological neural networks, that is, on the biological neuron, Ar-
tificial Neural Networks (ANNs) are mathematical models that have compu-
tational capacity acquired through learning and generalization. This struc-
ture attempts to mimic a human brain with connections between neurons
(synapses) and input and output signals.

Frank Rosenblatt at the Cornell Aeronautical Laboratory developed the
first multi-neuron network of the linear discriminator type and named this
network the perceptron. A perceptron is a network with neurons arranged in
layers. This proposed model learns concepts and can answer with true (1)
or false (0). In the early 1960s, Rosenblatt extended his work by publishing
several articles and a book (Rosenblatt, 1962; Tappert, 2019).

The resulting 45 GHz emission signal, after subtraction of the trend of
the time series (black curve of Figure 3) was input to a Multilayer Perceptron
Neural Network (NN). The temporal resolution of the light curve is 1 second,
which would generate a lot of data points for the network. Therefore, the
temporal resolution was modified to 10 seconds, using the median in each
10-second interval to reduce the number of data points. Then a 5-minute
window was considered to go through the resulting signal extracting chunks
every 10 seconds.

To better exemplify the process, in Figure 5 we show the validation of
time intervals to be later considered as true signals for input to the neural
network. In the example, the supposed event starts at 1:02:00 UT and ends
at 1:03:00 UT. The first true interval would be [0:58:00, 1:03:00] UT, the
second true interval would be [0:58:10, 1:03:10] UT, and so forth. Therefore,
we would have a sliding 5 min window traversing the final signal every 10s.
The last true interval of this supposed event would be [1:02:00, 1:07:00] UT.
If this was the only event in one day, there would be 25 true intervals.
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Figure 5: Example of interval extraction

This was the most critical process in evaluating the signal due to the
large volume of data. There were a total of 690 days of solar observation by
the POEMAS with an average of 10 hours per day. Considering a temporal
resolution of 10 s, there are approximately 3600 points in a day; thus resulting
in 2.484× 106 data points.

3.1. Neural Network Training (NNT)

Previously, Hidalgo Ramı́rez et al. (2019) visually detected and analyzed
30 events observed by POEMAS telescope, which are listed in Table 1. First,
we separate these events into two classes: training and classification. The
first 14 flares were separated into the classification group. Events 15 through
30 were used for training of the neural network. The model adopted was
supervised learning, where we submitted the 228 intervals referring to the 16
events and classified them as positive.

We need a balanced training base, and for that, we use the Nearmiss data
balancing algorithm, a subsampling algorithm that randomly reduces most
class examples. In the case of negative intervals, however, it selects samples
based on distance (Mani and Zhang, 2003).

The next step is to define the NN structure after the training base is
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N Date Time (UT) NN
1 2011/12/25 18:14 ✓
2 2011/12/25 20:27 ✓
3 2011/12/26 20:16 ✓
4 2012/01/27 18:15 ✓
5 2012/03/05 19:13 ✓
5 2012/03/06 21:05 –
7 2012/03/13 17:24 ✓
8 2012/05/07 17:23 –
9 2012/05/09 12:30 ✓
10 2012/06/03 17:53 ✓
11 2012/07/03 17:02 ✓
12 2012/07/04 16:36 ✓
13 2012/07/05 20:13 ✓
14 2012/07/08 16:30 ✓
15 2012/07/10 15:30 –
16 2012/11/27 15:56 ✓
17 2013/02/17 15:47 ✓
18 2013/05/13 16:03 ✓
19 2013/10/15 19:00 –
20 2013/10/25 15:00 ✓
21 2013/10/26 19:25 ✓
22 2013/10/28 15:10 ✓
23 2013/10/29 21:48 ✓
24 2013/11/05 18:10 ✓
25 2013/11/05 22:11 ✓
26 2013/11/06 13:43 ✓
27 2013/11/07 12:26 ✓
28 2013/11/07 14:18 ✓
29 2013/11/07 14:23 ✓
30 2013/11/07 14:29 ✓

Table 1: Events identified in the work of Hidalgo Ramı́rez et al. (2019). The last column
lists the events identified in this work by the Neural Network (NN).
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balanced (228 positives and 228 negative intervals). The input layer has 30
nodes that will receive each interval of 5 minutes with a resolution of 10
seconds. The output layer has only 1 node, which reveals if the prediction
for the data input is true or false. Several configuration tests were performed
for the middle layer, using one and two layers. The best training results were
found using only 1 intermediate layer. Thus, we decided to use one layer and
varied the number of neurons to compare the results.

Because we are using supervised learning, when the NNT predicts a given
input and the result is not expected, the network must adjust the weights
to reduce the error and repeat the process until the error rate is 0. The
activation function used was ReLu, as it is not linear and has better results
compared to Tanh.

ReLU is the most commonly used activation function when designing
neural networks today. The function is non-linear, and it does not activate all
neurons at the same time, because if input is negative, it will be converted to
zero and the neuron will not be activated. The Sigmoid function is a sensitive
function and is continuously differentiable. This is not a linear function, and
this is an interesting feature because it essentially means that when there are
several neurons with sigmoid function as activation function the output too
is nonlinear. This function varies between values [0,1]. The Tanh function is
very similar to the sigmoid function. In fact, it’s just an improved version of
the sigmoid function as it varies between values [-1,1] (Burns, 2019).

To assess the quality of training and classification, we consider accuracy
as a figure of merit, as it defines the proximity of an experimental result
to its actual value. The greater the accuracy, the closer it is to the actual
result. For all NNT configurations performed, the training had an accuracy
of 100%. That is, they hit 228 positives (VP) and 228 negatives (VN) and
had no false positives (FP) and no false negatives (FN).

3.2. Classification

The network efficiency and learning quality depend on its architecture
specification, that is, the function of neuronal activation, learning rule, ini-
tial values, and training data. We consider a network with 3 layers: one
input, one intermediate, and one output. This configuration showed the best
performance and results in the training phase. For the primary classifica-
tion, there were 14 events and 141 actual intervals. The 16 events used in
the training were labeled in the classification as negative.
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# Neurons True False False True Acuracy
Occult layer Positive Negative Positive Negative

Exp. 1 30 126 15 1522161 747732 33%
Exp. 2 60 126 15 1334829 935064 41%
Exp. 3 90 127 14 1338661 931232 42%
Exp. 4 120 127 14 1246748 1023145 45%
Exp. 5 150 126 15 1522170 747732 33%
Exp. 6 160 126 15 1196951 1072942 47%
Exp. 7 170 131 10 1355206 914687 40%
Exp. 8 180 113 28 1764115 505778 22%

Table 2: Results of the Neural Network.

For each experiment, we varied the number of intermediate layer neurons.
We started with 30 neurons and added 30 neurons in each experiment after-
wards. In Table 2, we present the results of the 8 experiments. In the first
column of the Table, the number of the experiment is given, in the second the
number of neurons used in the intermediate layer, in the third column the
number of positive intervals identified by the network as positive, and in the
fourth column the number of positive intervals specified as negative. In the
fifth column, the number of negative intervals identified as positive by the
NNT are seen. Finally, in the sixth column, the number of negative intervals
that are real negative, and in the seventh column, we have the accuracy of
each of the experiments.

We started with 33% accuracy in experiment 1 with 30 neurons in the
middle layer. In experiments 2, 3, and 4 we had a gradual increase in ac-
curacy, reaching 45%. In experiment 5, with 150 neurons, we had a drop in
accuracy to 33%, which is equivalent to the results in experiment 1. As the
results were not inferior to any previous investigation, we decided to continue
increasing the neurons to check the results. In experiment 6 we achieved an
accuracy of 47% with 160 neurons in the hidden layer. In experiment 7, the
accuracy decreases to 40%, and experiment 8 reached the lowest accuracy
found, 22%. Experiment 7 had the highest number of true positives but a
high number of false positives, so we focused on experiment 6 to analyze the
results. Experiment 6 with a configuration of 160 neurons had an accuracy
of 47%, the best among all the configurations.

To improve the results, we note that each minute has 6 points (10 sec-
onds time resolution) evaluated several times by the neural network. For
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experiment 9, if the network assessed less than 3 points within a minute as
positive, we would consider that minute as negative. For experiment 10, if
less than 4 points are evaluated as positive within one minute, this minute
is assumed to be negative. The proposed method improved the accuracy of
the neural network to 60%, as seen in Table 3. There are still many false
positives and a considerable decrease in true positives, from 126 to 13, when
comparing experiments 6 and 10. Also, the false negative increased from 15
to 128 cases.

# Positive True False False True Acuracy
Points Positive Negative Positive Negative

Exp. 9 < 3 25 116 990033 1279860 56%
Exp. 10 < 4 13 128 906998 1362895 60%

Table 3: Results of the Neural Network for experiments 9 and 10.

Since the results of the neural network presented many false positives,
we then compared the neural network results with the RSTN light curves,
as well as the POEMAS observations, by visual inspection. First, the daily
light curves from December 2011 to December 2013 (years of POEMAS ob-
servation) provided by RSTN were checked for events at frequencies > 4 GHz
(microwaves). When identifying a microwave event in the RSTN data, we
check if the Neural Network identified this event at the same day and time
in the 45 GHz data.

4. Results and discussion

In this work, we analyzed the 45 GHz light curves observed by POEMAS
telescopes for a total of 690 days, from December 2011 to December 2013. For
the analysis, we considered the sum of the signal involving the two circular
polarizations, RCP plus LCP. Moreover, visual inspection was performed on
the daily microwave light curves observed by the RSTN telescope network
during the same period.

The Neural Network (NN) application detected patterns in the 45 GHz
light curve of the POEMAs and identified already known events and new
ones. We compared the results of the Network with the work of Hidalgo
Ramı́rez et al. (2019), who identified 30 events, as listed in Table 1. In addi-
tion, some events identified in the RSTN microwave data were not detected
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visually in the POEMAS light curves nor by the NN, given its temporal char-
acteristic of long duration. Below we discuss each of these results in more
detail.

4.1. Events identified previously and confirmed by the Neural Network

The Neural Network identified 26 of the 30 events from the work of Hi-
dalgo Ramı́rez et al. (2019), thus the NN was able to retrieve 87% of the
events (last column of Table 1). An example of such an event is shown in
Figure 6 that occurred on 2013 May 13th. In the top panel, the POEMAS
light curve is shown in blue, whereas the points identified by the NN as pos-
itive are depicted in red. In the bottom panel, the microwave light curves
of the RSTN data from the Sagamore-Hill telescope (USA) are presented,
where the event at 16:03 UT is clearly seen at all frequencies. Thus, the NN
correctly identified the event that peaked at approximately 16:03 UT. This
was a large event, of GOES X-ray class X2.8, that occurred on the East limb
of the Sun.

4.2. Events previously reported and not identified by the Neural Network

In Table 1 there are four events identified visually by Hidalgo Ramı́rez
et al. (2019) but not recognized by the NN, which make up only 13% of
the events. The plots in Figure 7 represent the light curves of 2012 May 7th
observed at 45 GHz by the POEMAS and in microwaves by RSTN. The event
is clearly identified in the RSTN at approximately 17:23 UT. This event is
not easily recognized in the POEMAS data and was neither identified by the
NN, probably because of a duration longer than 5 min.

4.3. New events identified by the Neural Network

A total of 9 events were identified by the Neural Network, but went
unnoticed in the visual inspection of Hidalgo Ramı́rez et al. (2019). These
flares are listed in Table 4. An example of such is the burst that occurred on
2012 July 28th, identified by the NN at approximately 21:00 UT. The time
profile of the flare is shown in the top right panel of Figure 8, where the light
curve of the previous day was subtracted to eliminate the variation due to
the misalignment of the telescope, and better show the event.
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Figure 6: Light curves from the event on 2013/05/13 at 16:03 UT. Upper: 45 GHz data
from POEMAS (blue) and Neural Network result (red) and Lower: data from RSTN.

4.4. New long duration events visually identified

From the visual inspection of the RSTN microwave light curves, we iden-
tified 11 events not identified by Hidalgo Ramı́rez et al. (2019) nor by the
Neural Network, which are listed in Table 5. An example of such event is
shown in Figure 9 for the 2012 July 12th flare, a long-duration event that
lasted for more than 2 hours. The top panel shows the POEMAS 45 GHz
light curve in blue, withe the light curve of the day before depicted in green.
The subtraction of the emission from the previous day is shown in black on
the top panel and highlighted in the middle panel of Figure 9. The flare that
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Figure 7: Light curves from the event on 2012/05/07 at 17:23 UT. Upper: 45 GHz data
from POEMAS (blue) and Neural Network result (red) and Lower: data from RSTN.

started at approximately 16:00 UT, peaked just before 17 UT and ended af-
ter 18:30 UT, was not readily visually identified in the POEMAS light curve.
In the bottom panel of the figure, the microwave light curves observed by
RSTN clearly show the event at all frequencies, where the temporal profile
of the 15 GHz emission closely resembles that of the 45 GHz from POEMAS.
The non-identification of this and the other 9 events probably occurred due
to their gradual temporal profile, lasting from 30 minutes to more than an
hour. We point out that the data input for NNT consisted of 5 min intervals.
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Figure 8: Top: Poemas light curve on 2012 July 28th, with the event at 20:50 UT identified
by the NN depicted in red. Middle: Highlight of the 45 GHz event after subtraction of
the emission from the previous day. Bottom: Microwave light curve of the same day
observed by RSTN.
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Figure 9: Solar flare of 2012/07/12. Top: Light curve mission at 45 GHz from POEMAS
for the day of the event, 2012/07/12 (blue curve) and the previous day, 2012/07/11 (green
curve). The result of the subtraction of the emission on the 12th by the 11th of July
2012 is shown by the black curve (shifted by 900 to fit the scale of the figure). Middle:
Blow up of the subtracted light curve to better identify the solar flare detected at 45 GHz.
Bottom: Microwave light curves observed by RSTN (1− 15 GHz) for the whole day.
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N Date Time (UT)
1 2012/01/28 11:50
2 2012/05/08 13:00
3 2012/07/28 21:00
4 2012/09/02 18:10
5 2012/10/20 18:15
6 2012/10/21 20:00
7 2013/05/03 16:30
8 2013/05/03 17:30
9 2013/07/02 17:50

Table 4: Events identified only by the Neural Network

N Date Time (UT)
1 2012/03/02 17:40
2 2012/03/03 18:00
3 2012/03/04 11:00
4 2012/03/17 20:50
5 2012/06/06 20:00
6 2012/06/14 13:30-15:00
7 2012/07/12 16-17:00
8 2012/07/27 17:15
9 2013/07/03 20:00
10 2013/08/17 18:20-19:30

Table 5: Long-term events not identified in the work of Hidalgo Ramı́rez et al. (2019) nor
by the Neural Network

5. Summary and conclusions

In this work, we analyzed two years of light curves from POEMAS tele-
scopes at 45 GHz, from December 2011 through December 2013. The main
objective was to automatically detect solar events in these light curves. The
detection of solar flares in the light curves of POEMAS was hindered due to
problems with the telescope’s pointing, causing daily variations in the signal.
Therefore, it was necessary to apply initial computational techniques to cali-
brate and reduce the POEMAS data. We created and used a Neural Network
(NN) to identify solar flares in the data automatically. The application of
this Neural Network was later compared with the microwave emission (1−15
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Event Total Old∗ Neural Network Table
Old∗ 30 30 (100%) 26 (87%) 1
New 9 0 (0%) 9 (100%) 4

Long duration 10 0 (0%) 0 (0%) 5
Total 49 30 (61%) 35 (71%)

Table 6: Summary of the events detected, or not, by the Neural Network.
∗ refers to the events identified visually by Hidalgo Ramı́rez et al. (2019).

GHz) detected by the RSTN radio-telescope network.
The first challenge of this work was the data transformation, due to noise

and augmented by the misalignment of the telescope. Moreover, clouds ob-
structed the observation of the Sun and interference in the Earth’s atmo-
sphere even in the absence of clouds, such as increased water vapor or ice
crystals, also precluded the detection of the flare signal by creating several
spurious peaks in the light curves.

Using a Neural Network with supervised learning, we reached an accu-
racy of 47%. This value is low, however it is due to the few samples used for
training and the intrinsic noise of POEMAS’ light curves. Later the accuracy
was improved to 60% by using a constraint on the False Positives. Never-
theless, despite the problems in the data mentioned above, we confirmed 26
previously known events and could identify 9 new events detected in the light
curves of POEMAS, thanks to the NN.

Comparing the RSTN data for the two years of 2012 and 2013, we visually
identified 10 long-term events not previously identified in the POEMAS light
curve by visual inspection nor by the NN. As the Neural Network was not
supplied with any long-term events for training, it is not capable of detecting
this type of event. Thus the Neural Network constructed here can detect
only short-term impulsive events, with duration less than 5 minutes.

In summary, with the aid of artificial intelligence, in this work we have
identified 35 solar events in the 45 GHz emission from 2012 to 2013 from
a total of 49 bursts, or 71%. If we consider, that the NN was not trained
to detect events with duration longer than 5 min, then the accuracy of the
NN increases to 90%. From the total of 49 events, 19 solar flares are un-
precedented at 45 GHz, not having been identified in previous works that
analyzed these data (Hidalgo Ramı́rez et al., 2019). The statistics of the NN
is summarized in Table 6.

The use of artificial intelligence is innovating Astronomy. Especially in
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Solar Physics, we can mention the works by Hou et al. (2020); Ishikawa et al.
(2021); Neira et al. (2020), who obtained an accuracy of approximately 90%.
To leverage the study of solar flares, such techniques must be explored.

The search for solar flares using Neural Network was a first step to au-
tomating the process. Several challenges were encountered, such as clouds,
periodic signal variations, and non-detection of long-term events, and their
solution will be proposed in future work.
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